Adsorption-induced deformation in micro-to-macro-porous media
Abstract
Following the IUPAC recommendation, the pore space in porous materials is divided into three groups according to the pore size diameters: macropores of widths greater than 50 nm, mesopores of widths between 2 and 50 nm and micropores of widths less than 2 nm. Zeolites, activated carbon, tight rocks, cement paste or construction materials are among these materials. In recent years, a major attention has been paid on these microporous materials because the surface-to-volume ratio (i.e., the specific pore surface) increases with decreasing characteristic pore size. These materials can trap an important quantity of fluid molecules as an adsorbed phase. This is important for applications in gas storage, gas separation, petroleum and oil recovery, catalysis or drug delivery.
For these microporous materials, a deviation from standard poromechanics is expected. In very small pores, the molecules of fluid are confined. Fluid-fluid and fluid-solid interactions of molecules are modified and this effect may have significant consequences at the macroscale, such as instantaneous swelling deformations. In different contexts, these deformations may be critical. Generally, natural and synthesized porous media are composed of a double porosity: the microporosity where the fluid is trapped as an adsorbed phase and a meso or a macro porosity required to ensure the transport of fluids to and from the smaller pores. If adsorption in nanopores induces instantaneous deformations at a higher scale, the matrix swelling may close the transport porosity, reducing the global permeability of the porous system or annihilating the functionality of synthesized materials.
People
Current people in the group:
Akli Kahlal
MSc/PhD student
Towards a DFT approach to elasticity and fracture in porous materials.
Benhur Tilahun Mekonnen
PhD student
Synthesis of nanostructured and hierarchical micro/mesoporous materials for the study of adsorption-induced deformation in the context of gas storage and transport
Alumni:
Carine Malheiro
Postdoc fellow
Following position:
Teacher
Laurent Perrier
PhD student
Postdoc fellow
Coupling between adsorption/deformation/transport in porous media(24 months 2015/2017)Following position:
Assistant ProfessorLFCR, UPPA
Pearl Agape Tetteh
MSc student (M2)Incorporation of adsorbent particles for resilient and self-healing cementitious grouts(MSc defense 13-09-2021)PhD candidateThe University of New Mexico
USA
Youssef Khaldouni
PhD StudentCoupling between poroelasticity and density functional theory for the estimation of adsorption-induced deformations in nanoporous materials(PhD defense 15-05-2023)Design and methanisation
NENUFAR
France
Connected publications
Connected projects
Newpores - New Frontiers in Porous Materials
Granted by E2S UPPA, NewPores is an international hub dedicated to the mechanics and physics of porous materials, which intends to answer to new Energy and Environment challenges. This is a joint effort of the group on Geomechanics and Porous Materials (G2MP) of the Laboratoire des Fluides Complexes et leurs Réservoirs at E2S UPPA (France), the Centre for Sustainable Engineering of Geological and Infrastructure Materials (SEGIM) at Northwestern University (USA), the University of Vigo (Spain), the Technical University of Madrid (Spain) and University of Liège (Belgium).
I-M-API - Influence in Microporous media of the Adsorbed Phase on Instantaneous and delayed deformations
Granted by the Institut Universitaire de France, the French Carnot Institute Isifor, I-M-API aims at characterising the influence of an adsorbed phase on the instantaneous and delayed deformations in microporous media. Confinement effects will be estimated at the pore nanoscale by efficient DFT-based models, upscaled in enhanced poromechanical frameworks and implemented in simulation tools in order to predict deformation, failure and transport properties of heterogeneous micro-to-macro-porous structures.
CEPAGE - CEPAGE 2 - Couplages adsorption/gonflement en milieu poreux peu perméable
Dans les matériaux microporeux (pores de taille inférieure à 2 nanomètres), les interactions fluide/solide et le confinement augmentent considérablement l’adsorption du fluide, sa densité et donc la pression au sein des pores. Cette surpression peut générer une déformation de gonflement du milieu, entrainer une éventuelle fissuration de la structure, ou au contraire une refermeture du réseau de microfissures existantes. Les projets CEPAGE & CEPAGE2, financés par la région Aquitaine, la communauté d'agglomération de Lacq-Orthez et le Conseil Général 64 visent à mieux décrire les couplages adsorption/gonflement dans les milieux microporeux qui sont également peu perméables. Pour ces milieux, les intérêts sont immédiats, que l’on cherche à garantir une faible perméabilité comme dans les ouvrages de stockage géologique (stockage de CO2 par exemple), ou au contraire que l’on cherche à l’augmenter comme dans l’exploitation responsable des ressources non-conventionnelles ou en géothermie profonde.